PHYSICAL REVIEW E

VOLUME 50, NUMBER 3
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The effect of sample size on fluid saturation during capillary invasion is determined by modeling the
invasion process on three-dimensional cubic networks consisting of pore throats with radii randomly
selected from various pore size distributions. Without buoyancy, the threshold saturation of the nonwet-
ting fluid when it completes a connected path across a sample decreases with the square root of sample
size for all the pore size distributions studied. Experiments on Berea sandstone samples ranging from 0.3
to 30 cm in size confirm the 1/V'L scaling relation. The 1/V'L scaling is the prediction of percolation
theory without buoyancy. Large-aspect-ratio [(height):(diameter)] samples have greater threshold
nonwetting phase saturations than low-aspect-ratio samples. Relative permeability, which is dependent
on the largest interconnected pores, also depends on sample size and shape. The pore size distribution
affects the pore occupancy when buoyancy is important. To describe this effect we introduce a measure
of the skewness of the pore size distribution into the Bond number (the Bond number B is the ratio of
buoyancy to capillary pressures). For all the cases examined, a universal scaling law for the threshold
saturation has been found based on the ratio of sample size L to Bond number correlation length £z. &3
is proportional to B ~%*'. This scaling relation incorporates the effects of fluid density contrast, pore size
distribution, surface tension, and contact angle while retaining the basic Bond number scaling previously
predicted for percolation on lattices with uniform (flat) pore size distributions. The height of the critical
pore that must be filled to achieve breakthrough of the nonwetting phase is a useful parameter that also
scales with L /£5. These finite-size scaling results have important implications for models of oil migra-
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tion to reservoirs and models of pollutant migration in ground water.

PACS number(s): 47.55.Mh, 47.53.+n, 91.60.—x

I. INTRODUCTION

The flow of immiscible fluids in porous media is central
to numerous technologically important processes. In
both the formation and production of petroleum reser-
voirs one fluid is displaced by another in a porous medi-
um, the sedimentary rock. When pollutants migrate in
soils a nonaqueous liquid phase displaces ground water.
The escape of gas from radioactive waste repositories
occurs when gas displaces water from a porous rock. In-
terest in these and similar problems has led to numerous
theoretical and experimental studies of the fundamental
processes. In the higher velocity flow regimes macro-
scopic fluid instabilities such as viscous fingering are seen.
When the flow is very slow viscous forces can be neglect-
ed and the dynamics are dominated by capillary and
buoyancy forces. The slow flow regime is important to
the migration of oil to and from a reservoir and to the
pollution migration problems. In this study we are in-
terested in the slow flow, capillary pressure dominated re-
gime and in particular the size-dependent scaling of the
flow.

The slow displacement of one fluid by another from a
porous medium is now recognized to be a special problem
in percolation known as invasion percolation [1-3]. In
invasion percolation only pores connected to the invading
front are filled. Several papers have discussed invasion
percolation in porous media in the presence of a buoyan-
cy pressure gradient [4-7]. These papers have concen-
trated on the case where the capillary pressures are much
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less than the buoyancy pressures. Under those conditions
the light invading fluid rises rapidly upward in a column
of “blobs” where each blob has a size characteristic of the
percolation coherence length. The fraction of occupied
bonds averaged over the height of the column is typically
10-20%. In this paper we consider a problem that is
more representative of the physical conditions expected
in the slow migration of oil from a source rock to a reser-
voir, a process known as secondary migration. (Primary
migration is the migration of oil or gas out of a source
rock, such as a shale, into a carrier rock that might be a
sandstone, for example.) Our work is also applicable to
the slow migration of other nonaqueous phases into
water-saturated porous media.

The problem we model is a porous medium filled with
wetting fluid overlying a source of nonwetting fluid. The
nonwetting fluid slowly enters the bottom face of the
porous medium and at each point in time reaches capil-
lary equilibrium. The pressure in the nonwetting fluid is
permitted to rise to whatever value is necessary to over-
come capillary pressures. The capillary pressures are as-
sumed to be so large that the buoyancy pressure does not
spontaneously cause completion of the first connected
path of nonwetting fluid, i.e., the sample is smaller than
the percolation coherence length.

The results of our model calculation lead to con-
clusions about the expected field-scale saturations and
flow rates that are in substantial disagreement with the
conventional assumptions used in geological basin model-
ing. In particular, we expect that the threshold satura-
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tions for migration of hydrocarbons in the cited applica-
tions will be substantially smaller and the flow rates sub-
stantially higher than usually assumed.

Network simulations of invasion percolation have been
extensively used to represent the slow displacement of a
wetting fluid in a porous medium [3,8,9]. At break-
through, i.e., when the invading fluid spans the network,
the invaded fluid structure is a percolation cluster of frac-
tal dimension 2.5 [1,8]. The mass of the percolation clus-
ter thus scales as L?3 while the total volume scales as L>.
Thus the saturation varies with the size dimension as
L?*3/L3=L 12, This result suggests that saturation in
secondary migration could be very small on the basin
scale of hundreds to thousands of meters. Both the scale
dependence and the possibility of low saturation at the
scale of geological basins contradict the conventional wis-
dom for secondary migration, which has been that oil sat-
urations must be relatively high, e.g., 10-15%. High
saturation estimates are based on capillary invasion ex-
periments at high flow rates in glass bead packs or from
capillary breakthrough experiments on small (~2 cm)
cores [10]. The high saturations are often erroneously
reinforced by the expected ~15% saturation in ordinary
percolation, which does not apply to this invasion situa-
tion.

In the Earth, the effect of gravity must also be con-
sidered. When a rock that is saturated with high density
fluid is injected from below by a low-density nonwetting
fluid, the hydrostatic pressure adds to the injection pres-
sure and creates a vertical gradient in the effective injec-
tion pressure. The fraction of accessible pores increases
with height. Wilkinson [1] showed that the length scale
over which percolation fractal behavior is observed de-
creases with increasing buoyancy. In addition, Wilkinson
showed that when invasion of a lattice proceeds by select-
ing the largest accessible pore at each step, the saturation
decreases with buoyancy. Many similar studies have
been done [4,5,9], but few have systematically studied the
influence of pore size distribution and buoyancy.

We simulate the invasion of nonwetting fluid into rocks
of various sizes with three-dimensional cubic lattices.
When a connected pathway of nonwetting fluid first
forms between the ends of the sample, occupation of the
lattice without buoyancy is proportional to L ~ /2, as pre-
dicted for the percolation problem. The size of the criti-
cal pore that must be filled for breakthrough to occur is
relatively insensitive to sample size. We specifically iden-
tify and determine the saturation of the filled “pretender”
paths that are not connected to the percolation cluster at
breakthrough. Our experimental results for invasion
display the L ~!/? dependence of saturation over the
range of sample sizes from 0.3 to 30 cm. We also present
saturation data on a rock with highly anisotropic struc-
ture and show that the saturation is consistent with two-
dimensional percolation. To describe how pore size dis-
tribution affects the influence of buoyancy on saturation,
we incorporate a measure of the skewness of a pore size
distribution into the Bond number (the ratio of buoyancy
to capillary pressures). The new Bond number is related
to the correlation length over which the invaded struc-
ture is fractal in the manner described using invasion per-
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colation theory by Wilkinson [1,2]. For sample sizes of
the order of this correlation length, buoyancy effects are
shown to be negligible. In both our experiments and
simulations, we consider the range of relatively small
Bond numbers between 107> and 0.05. This contrasts
with most experimental studies that typically have Bond
numbers in the range 0.01-0.8 [6,7]. Small Bond num-
bers are more characteristic of problems in secondary mi-
gration and possibly critical gas saturation. For our con-
ditions we show that buoyancy enhances saturation. The
relative height of the critical pore that must be filled for
breakthrough also depends on the Bond number. We
show that saturation is dependent on the aspect ratio of
the sample. Our experimental results suggest that rela-
tive permeability at breakthrough depends on sample size
and shape.

The simulations show that the buoyancy effects depend
on the pore size distribution. Pore size distributions that
reflect those expected in rocks are skewed toward small
pore sizes. In these distributions the effects of buoyancy
are substantially reduced. These results suggest that
simulations on uniform (flat) pore size distributions and
experiments on bead packs will not accurately model
rock behavior.

Our choice of boundary conditions and the use of
capillary equilibrium differs from many similar studies
[8,9], which attempt to incorporate dynamic effects of in-
vasion into percolation models. The differing methods
produce identical invaded structures as the percolation
threshold is approached; however, saturations at break-
through will differ. The choice of appropriate conditions
for applications depends on the detailed characteristics of
the modeled process. However, our description of the
effect of pore size distribution on Bond number, correla-
tion length, and the height of the critical pore that must
be filled for breakthrough generally applies.

We do not confine ourselves to the situation of oil in-
vading water-saturated porous media. We consider large
and small density contrasts as well as examples of nega-
tive buoyancy, i.e., a dense nonwetting fluid entering
from the base of the rock. Thus the results are equally
applicable to the migration of oil through water such as
in secondary migration, the migration of gas through oil
such as in the critical gas saturation of importance in
reservoir engineering, the migration of gas through water
such as in air sparging techniques for remediation of pol-
luted soil [11] or from a radioactive waste repository, and
mercury injection experiments. We report experimental
results on both oil invasion and mercury injection.

II. DESCRIPTION OF CAPILLARY
INVASION SIMULATIONS

We model the capillary invasion of nonwetting fluid
into a rock saturated with wetting fluid, e.g., oil into wa-
ter, using simulations that share the following features:
three-dimensional cubic lattices of different size, pore
throats represented by lattice bonds, nonwetting fluid in-
vasion, source at the base, source pressure incremented
until breakthrough, capillary pressure equilibrium, small
Bond numbers, cylindrical nonperiodic boundaries, and
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sample size variable. These characteristics are discussed
in greater detail below. Some simulations with higher
coordination number lattices, different boundary condi-
tions, or variable aspect ratios are also discussed in later
sections.

Rather than using cells with planar boundaries, cylin-
drical sample geometry was chosen. Cylindrical
geometry defines the horizontal length scale unambigu-
ously as the diameter. In contrast, the length scale of a
square cross section is ambiguous. Lattice sizes ranged
from 8 to 100 units. Most horizontal (xy) bonds at the
cylindrical perimeter are terminal; a few bonds connect
to vertical bonds on the cylindrical boundary. Periodic
boundary conditions, which are not readily used with the
cylindrical geometry, require segments that cross a verti-
cal boundary to terminate within the structure or to be-
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come part of the flow path between top and bottom sur-
faces. This requirement results in higher saturations and
more parallel pathways compared to the case of terminat-
ing boundaries. Rather than using periodic boundaries,
we prefer to generally use relatively small ratios of the
numbers of surface bonds to interior bonds. Periodic
boundary conditions for fluid invasion are not representa-
tive of either laboratory core plugs or the field scale prob-
lem.

Each bond in the lattice is assigned a pore throat ra-
dius that is randomly selected from a particular pore size
distribution. A throat can be invaded if it is connected to
a filled throat and if the invading fluid pressure Pg is
greater than or equal to the capillary pressure P, corre-
sponding to that throat. The capillary pressure for a cy-
lindrical pore throat of radius  is given by

TABLE 1. The ranges of parameters investigated in numerical simulations of capillary invasion with
buoyancy. For all runs unless noted ¢t =0.02 cm, 2y cos§=623.5 g/cm for negative buoyancy, and

2y cos@=27 g/cm for positive buoyancy.

L/h Ap
(units of bonds) (g/cm?®)

(um)

T max T min
(pum) m

Power-law distribution with negative buoyancy

20 to 40 —30to —13 50 0.5 0
32 —13.54 500 5 —25t00
Power-law distribution with positive buoyancy
40° 1.19 50 0.5 0
8 to 100 Oto5 50 0.5 —25t0 1
16 to 50 Oto7 500 5 —25t00
32 2to 25 100 1 —25¢to 1
20 to 32 0.75 to 1.2 125 1.25 0
32 to 50 1.2 to 2.5 20 0.2 0
32 to 50 5 250 2.5 —2.5
32 25 200 2 —2.5
20 to 32 1.2 to 2.5 100 0.1 0
20 1.19 100 0.01 0
20 1.19 100 0.001 0
32 2 100 500 0
32 0.75 to 1 100 200 0
20 1.19 50 0.05 0
Linear distributions
32 to 40 0.5 to 2 50 0.5 100 to 1000
Binomial distributions®
32 05t 1 50 0.5 0.2 to 0.5
Power-law distribution with cubic boundaries®
245 Oto2 50 0.5 0
25 0to2 50 0.5 0
Power-law distribution with high coordination (Z =14)°
11 to 20 Otol 50 0.5 0

*For power-law pore size distributions m is the exponent; for linear distributions m is the ratio of the
number of radius 7, to the number at r,,; for binomial distributions m is the event probability.
®Runs with throat length ¢ varied from ¢ =0.01 to 0.04 cm, or 2y cos0=54 g/cm.

°“Number of trials’’ = 500.

dCubical rather than cylindrical sample boundaries.

“Body-centered-cubic lattice with next nearest neighbors (Z = 14); cylindrical sample boundaries.
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P,= 2y cos(8) , ()

r

where v is the interfacial tension between the oil and wa-
ter and 0 the contact angle measured between the oil-
water and water-pore-wall contacts. The fluid pressure at
height Z is given by

Po(Z)=P,+ApgZ , 2)

where Ap is the density difference between water and oil,
g is the gravitational acceleration, and P, is the pressure
at height Z =0, which corresponds to the top of the
source region, i.e., the base of the invaded rock. Only the
pore throats are considered in this calculation; pore bo-
dies of radii larger than the throats that connect them do
not affect the criterion for nonwetting fluid invasion.

The ranges of typical parameters used in the calcula-
tions are given in Table I. The oil source is located at the
cylinder base (Z =0) and the lateral extent of the source
spans the entire cylindrical base. The source fluid pres-
sure at Z =0 is incrementally increased. With each pres-
sure step, the accessible pore throats (nearest neighbors
to the filled structure) that can be filled, i.e., P, < Pp(Z),
are filled. Viscous effects are ignored; it is assumed that
the pores fill quasistatically. The calculation is terminat-
ed at the percolation threshold, i.e., when the oil forms
the first connected path from the basal source to the
upper boundary. This pressure increment method, which
is also used by Fatt [12], de Gennes and Guyon [13],
Maier and Laidlaw [14,15], and Ferrand and Celia [16],
differs from that commonly employed in ‘““invasion per-
colation” [5,8,17-19]. In invasion percolation bonds are
assigned random numbers X; between O and 1. The ran-
dom numbers are adjusted for the effect of buoyancy
through

R,=X,+Gz, , (3)

where R; is the threshold at the ith bond, z; is the height
of the bond, and G is the gravitational gradient (which is
negative for the invasion of low-density nonwetting fluid
into wetting fluid). At each step the invading fluid is ad-
vanced into the bond that has the lowest rank R; among
those bonds that are nearest neighbors to the invaded
fluid. The chosen rank may decrease when new nearest
neighbors become available. In contrast, the pressure in-
crement method enables all accessible pores that can be
filled at a certain applied pressure (rank) to be filled and
injection pressure (rank) always increases with each new
step. Figure 1 shows the differences that result for a sim-
ple case consisting of a two-dimensional section of sites.
Without buoyancy, 25% more bonds in this case are filled
by the pressure increment method [cf. Figs. 1(b) and 1(c)].
With buoyancy the ranks of the sites are reduced with
elevation [Figs. 1(d) and 1(e)]. The lowest-rank method
produces a lower saturation compared to the case
without buoyancy, whereas for the pressure increment
method the number of filled sites increases.

Our pressure increment technique is clearly a constant
applied pressure technique because the invaded structure
for a given run only depends on the final applied pressure.
In contrast, the lowest-rank method, which is defined as
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invasion percolation by Wilkinson and Willemsen [8], is
an attempt to model displacement at constant flow rate.
A more physically applicable model of displacement at
constant flow rate would likely include fluid viscosity and
hydrodynamic pressure drops directly in the invasion al-
gorithm. The invaded pore structures for these two in-
vasion methods are identical at the rank (pressure) re-
quired to breakthrough the critical pore. Beyond this
point, they differ as the lowest available rank decreases.
Because the location of the critical pore that must be
filled for breakthrough is at ~3 of the sample height for
the cubic lattice (and lower when the invading fluid is less
dense; see later discussion), more pores at higher eleva-
tions can be filled at that same injection pressure than is
the case when the next lowest rank is selected. Thus, at
breakthrough the pressure increment method produces a
denser structure near the top of the sample that becomes
more dense with increasing buoyancy.

In capillary invasion pore throats that are not connect-
ed to filled throats cannot be filled, so we do not have to
treat the entire lattice in the calculation. The filling of a
pore throat on a cubic lattice allows access of up to five
new unfilled throats. In each run, we treat only the grow-
ing pseudolattices that consist of the nearest neighbors to
the filled throats and the filled throats themselves. The

.64 .84 .5
.01].81
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FIG. 1. Capillary invasion on a 5X5 square lattice adapted
after Bunde and Havlin [19]. Values refer to the rank or resis-
tance of sites (a) in the initial state, (b) after 12 steps of seeking
lowest rank, and (c) after 6 steps of increasing the selected rank
and filling all sites of rank less than or equal to the selected
rank. Numbers refer to the step and primes denote sites that
are subsequently filled during the same step. (d) The rank is re-
duced by a vertical gradient of 0.2 per cell and sites of lowest
rank are filled. (e) The rank is reduced as in (d) with site filling
as in (c). (P The rank as in (a), but with a vertical gradient in
fillable rank (pressure) of 0.2 per cell. Case (f) is equivalent to
(e) and can be interpreted as the result of a buoyancy pressure
gradient of 0.2/unit plus an injection pressure of 0.09. Satura-
tions at breakthrough are (b) 48%, (c) 60%, (d) 36%, and (e)
64%.
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number of remaining pores that are not explicitly defined
in the calculation are each assigned a volume correspond-
ing to the mean (expected) volume for a pore of a given
pore size distribution. This approach has the advantage
that the computer memory required to store the pore
structure is significantly reduced. For example, on a 50
bond diameter, 50 bond high cylinder, the invasion can
be simulated with less than 25% of the total number of
throats in the complete lattice. In addition, this tech-
nique is valuable when examining the path of the oil as it
migrates in space without the influence of boundary con-
ditions. Such studies are potentially useful for under-
standing the spatial variability of secondary migration
pathways.

We do not include effects of trapping of the wetting
fluid (water) by the invading oil. At the percolation
threshold in three dimensions, the saturations are low
enough that trapping is rare especially for the larger sam-
ple sizes. In rocks where the coordination number may
be greater than 6 (cubic) and surface roughness exists,
trapping of the wetting fluid during slow drainage is like-
ly to be even less probable at the percolation threshold.
In some runs where saturation is high at the top of the
sample due to buoyancy there may be trapping that is not
accounted for by our model. The saturations in those
cases would be reduced.

III. THE CHARACTERISTIC
PORE THROAT RADIUS

The total number of tubes in the network for any given
lattice size is

Npe [ ™ f(rdr, )

where f(r) is the pore size (throat radius) distribution
that ranges from radius r,, to r;,, which are the max-
imum and minimum pore sizes on the lattice. The frac-
tion of all tubes in the network with radius larger than a
particular radius 7, is

rmax ’mnx
p=[""rar [ [ ™ mar (s)
For power-law pore size distributions
rm+1_rm+1
p=—r—— (m#*—1), (62)
Tmax ~ "min
In(rpax /1)
= =—1). 6b
4 (r /ro) (m ) (6b)

p corresponds to the occupation probability in ordinary
percolation in which all lattice bonds less than a specified
rank (i.e., greater than r,) are occupied irrespective of
whether or not the bonds lie on a path that is connected
to the “source.” In the case of invasion percolation,
bonds can only be occupied if they are adjacent to bonds
that are already occupied and hence Eq. (6) does not ap-
ply. For invasion percolation we will denote occupied
bond fractions with F to distinguish them from their
counterparts in ordinary percolation. The critical occu-
pation probability in ordinary percolation p, is the
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minimum value of p when at least one path connects the
bottom and top boundaries for a lattice that is randomly
filled. For a simple cubic network p,~0.2488 [20]. At
the percolation threshold p =p. and the smallest radius
on the percolating cluster can be determined from Eq. (6).
This radius, which we denote as r,, is the crucial link in
percolation [21]. r, is the same for ordinary percolation
and capillary invasion percolation. If it is filled, a cluster
of filled pores connects the top and bottom of the sample.
r. corresponds to the characteristic length parameter /,
(=2r,) found from mercury-injection capillary pressure
studies [21,22]. This radius is identified as the point of
inflection of the capillary pressure curves (see Fig. 2) and
marks the instant of breakthrough [23]. It is explicitly
determined in the present numerical simulations. In Fig.
3 the capillary invasion simulation was allowed to contin-
ue beyond the breakthrough pressure. The simulation
shows many of the same features as the experimental data
including the positive curvature before breakthrough and
the negative curvature after breakthrough, as well as the
staircase structure. It is only necessary to reach the in-
stant of breakthrough to determine r.. The capillary
pressure that must be attained for breakthrough is given
by Eq. (1).

r. calculated from Eq. (6) with p =p_. compares well
with ., determined directly from the simulations for
different power-law pore size distributions. This
correspondence is independent of buoyancy and sample
size over the range of parameters investigated. Although
we observe that r, decreases with decreasing buoyancy,
the dependence is very weak. The relationship between
r. and the arithmetic mean 7 of the pore size distribution
is shown in Fig. 4 for power-law pore size distributions.
In general, r, is of the order of 7.

At zero buoyancy, r,. (and the corresponding capillary
pressure) also depends on sample geometry. r, increases
slightly with sample size for samples of aspect ratio
[(height):(diameter)] 1; it decreases slightly with increas-
ing aspect ratio (Fig. 5). These results suggest that for
large sample sizes the probability that the invaded path
must go through a small pore is reduced and that for
high-aspect-ratio samples there is a lower probability that
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FIG. 2. Typical mercury injection curve for Berea sandstone.
The inflection point is a capillary pressure corresponding to the
characteristic length parameter /. (=2r,).



2074

1pgrrrrrrr | BRI LI BELE B

~ 08 =
- L R
1S C ]
E 0.6 I~ =
o C / ]
E 04 : -
=2 C ! ]
o - ] .
> 0.2 - . =
0 o R T R T A A

0 200 400 600 800 1000

Pressure (kPa)

FIG. 3. Simulation of capillary pressure curve for a run with
a uniform pore size distribution (m =0) over the range 0.5-50
um with 2y cos6=27 dyn/cm.
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FIG. 5. The sample size in units of bonds (open circles) and
the aspect ratio [(height):(diameter)] at constant diameter of 18
bonds (solid boxes) or 24 bonds (solid dots) as functions of the
characteristic radius 7.
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FIG. 6. Critical occupation probability for ordinary percola-
tion p, as a function of lattice coordination number Cy. The
data are from [14] (A), [20] (+), and [24,25] (O). The dotted
line corresponds to the relation from [26] [see Eq. (6)].

the path can avoid a small pore.

The critical percolation probability for ordinary per-
colation is a sensitive function of coordination number
[14,20,24,25], as shown in Fig. 6. With increasing coordi-
nation number, p. decreases according to the power law

d
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1
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[26]. From p.(Cy), r. /74 (Cy) can be determined from
Eq. (6). Figure 7 shows r. /r_,, for four power-law distri-
butions (m =1.5, 0, —1.5, and —2.5) and for three pore-
size-distribution windows (relative widths are r, /7. ).
With increasing coordination number, r, moves closer to
Fmaxe When m =0, r./r... is independent of 7, /7 i;
for m <0, r,/rpy,, decreases with increasing r_,, /7,
For a given window, r, /r_,, increases with increasing m.
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FIG. 7. Ratio of the characteristic radius to maximum radius
as a function of coordination number Cy for power-law pore
size distributions as determined from Eq. (6). The relative
widths of the pore size distribution windows are 7,y /7 min = 107,
10%, and 10* and the power-law exponents are m =1.5,0, — 1.5,
and —2.5. For each of m =1.5 (solid curve) and m =0 (dashed
curve), all three windows yield the same r /7., (Cy). For
m = —1.5 (solid-dot curves) and m = —2.5 (open-dot curves),
the dot symbols increase in size from 7,y /7min = 10* decreasing
t0 7 max /7 min = 102
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‘The rate of change of r, /7, 9(7. /7 p..)/3Cy depends
more strongly on m than the distribution window width.
It can be concluded from Fig. 7 that for power-law pore
size distributions with m <0 (i.e., skewed toward the
smaller pores) and Cy >3, coordination number may
have a smaller effect on r, compared to the effect from
the pore size distribution itself (i.e., m and r_,, /7. ).

IV. EFFECT OF BUOYANCY
ON CORRELATION LENGTH

In percolation theory, the correlation length £ is
defined as the average root mean square distance between
occupied sites that belong to the same finite cluster [17].
It is a measure of the connectedness of filled pores at a
particular occupation probability. Near the percolation
threshold

§~(p—p)", @)

where p is the occupation probability [Eq. (6)], p. is the
critical probability, and v=0.88 for a three-dimensional
lattice [20]. At p =p. we have £= . Although p gives
the fraction of tubes with r = r,, the fraction of filled (oc-
cupied) tubes belonging to the percolation cluster is

P,~(p—pP, 9)

where 8=0.42 in three dimensions [19].

At breakthrough without buoyancy the correlation
length is infinite and sample size L <<£. The cluster of
pores that belong to the infinite cluster is a fractal of di-
mension 2.5 in three-dimensional space [8]. Thus the
probability that a throat belongs to the infinite (percolat-
ing) cluster is P ~L ~'/2 for a volume proportional to
L3

In the case of buoyancy, the length over which the
fractal behavior is observed is limited by the interplay be-
tween buoyancy and capillary pressures. Wilkinson [1,2]
recognized that the buoyancy pressure gradient, which
causes a variation in the accessible pore fraction with
height, can be equated to a gradient in occupation proba-
bility. The change in occupation probability over a
correlation length cannot exceed p —p,:

% B _
§az §h—p Pe > (10)

where B is the Bond number, i.e., the ratio of buoyancy
to capillary pressures, and A is the lattice spacing.
Without such a limit, as the percolation threshold is
reached the change in percolation probability over a
correlation length £B /h would be infinite no matter how
small the Bond number. By combining Egs. (8) and (10)
Wilkinson [2] showed that the maximum correlation
length in the pressure of buoyancy is

§B v/(v+1)

h ) (11

B

where v/(v+1)=0.468. The invaded structure is fractal
over a correlation length &, [1,2].
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V. NUMERICAL AND EXPERIMENTAL RESULTS

For most of the numerical simulations summarized in
Table I the pore throat radii r are randomly distributed
with a distribution function f(r)x<r™, where m ranges
from O for uniform distributions to —2.5 for strong
power laws and the pore size window ranges between
Fmax and 7 ... Usually we chose r,, /7., =100; some
wider and narrower distributions were also studied. A
few binomial and linear distributions were also examined.

A. Size dependence without buoyancy

Figure 8 illustrates the result of a numerical simulation
of capillary invasion on a 32-unit-height, 32-unit-diam
cylinder without buoyancy. The pore throat radii are not
illustrated full scale in the figure. The pores that belong
to the percolating cluster that connects the basal source
and the top of the sample are shown in violet. The pre-
tender pathways, which start at the source but never
reach the top, are shown in green. Typically, the max-
imum pretender height is less than half the sample height
and their relative heights decrease with increasing buoy-
ancy. The structures such as those shown in Fig. 8 vary
considerably from run to run. Usually several hundred
runs with different selections of random pore sizes are re-
quired to get adequate averages. We have not found
significant improvement in the statistical averages by ex-
amining higher coordination lattices, e.g., Cy=14
(body-centered cubic with next nearest neighbors). This
result, in view of the fact that measurements from adja-
cent cores of most rocks do not exhibit wide variability in
saturations, suggests that there exists long-range order
among the pores in rocks.

Figure 9(a) shows the fraction of sites belonging to the
percolating cluster as a function of lattice size for 1:1
aspect-ratio cylinders without buoyancy forces. Most of
the points in this plot represent the average of several
hundred runs (see Table I). Regardless of the pore size
distribution

1
VL/h ' (12)

where F_(0) is the fraction of sites belonging to the per-
colating cluster when buoyancy is absent (Ap=0), L is
the sample size, and & is the lattice spacing. The
(L/h)"'? dependence is expected from theory as dis-
cussed in the Sec. IV. It has also been verified by similar
network simulations by Blunt, King, and Scher [9] using
the lowest-rank method of invasion. The fact that ordi-
nary percolation and invasion percolation via constant
pressure or lowest-rank methods produce the same struc-
tures at zero buoyancy and that the fractal dimension of
these structures depends only on the dimensionality d =2
or 3 of the lattice indicates that all structures belong to
the same universality class.

Figure 9(b) shows the sample size dependence of the
fraction of bonds that belong to the backbone as deter-
mined by a method similar to that of Herrmann, Hong,
and Stanley [27]. Only uniform pore size distributions
(m =0) were examined, although without buoyancy oth-

F.(0)x
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er distributions have the same dependence. The fractal
dimension of the backbone Dy is 1.94 for these simula-
tions. (We also observe the same Dy when periodic
boundary conditions on cubic lattices are used.) In a
similar manner, Herrmann, Hong, and Stanley [27] calcu-
lated Dy=~1.77. Other values of Dy include 1.74 (per-
colation cluster structure studies [28]), 1.8-2.1 (Monte
Carlo simulations [29]), and 1.83 (series expansion [30]).
The present value for Dy was computed for invasion per-
colation with pressure throughout the structure given as
the breakthrough pressure. Consequently, the backbone
contains additional bonds near the upper boundary com-
pared to the cases of ordinary percolation where cluster
growth stops as soon as the upper surface is contacted.
The inclusion of these bonds causes a higher Dy here rel-
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ative to that for most of the other estimates for ordinary
percolation.

Figure 9(c) shows a similar plot for the fraction of sites
F, that occur on the pretender paths that are not con-
nected to the percolating structure. Because there may
be several isolated pretenders each of which terminate at
a different height, their total volume does not follow the
1/V'L/h dependence. For sample sizes greater than
~30 bonds, the percolating cluster accounts for ~60%
of the total occupied pores. The simulations show that
the ratio of the volume of pores on the percolating cluster
to that of the pretenders is directly related to their occu-
pancy fractions: V./V,=F_/F,. This relation applies to
all pore size distributions we examined. (It is also likely
to apply when pore bodies are also included in the calcu-

FIG. 8. Displacement pattern at breakthrough obtained from nonwetting fluid invasion on a cubic lattice from the base into a
cylinder of size «323. The pore size distribution is uniform, i.e., m =0. The percolating structure is shown in violet and the pre-
tenders are in green.
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lation because both the pores belonging to the pretenders
and the pores belonging to the percolation cluster are de-
scribed by essentially the same pore throat and pore body
distribution functions.) Figure 9(d) shows the total frac-
tion of filled sites F,, i.e., pretenders plus percolating clus-
ter. The decrease of F, with sample size follows
~(L /h)~%% dependence; within error, this dependence
is indistinguishable from the (L /h)~!/? dependence. We
concentrate our analyses mainly on the percolating clus-
ter because it is more important for flow.

Figure 10 shows the results from laboratory measure-
ments of breakthrough saturations in Berea sandstone as
a function of sample size over the size range of 0.36-30
cm. The datum on the 30-cm-diam, 30-cm-high sample is
the result for a slow upward invasion of tetradecane from
the sample base into water filled pores. The data on
smaller samples are for mercury injection from all sur-
faces into evacuated samples. The datum at 3 cm was
common to both mercury injection and tetradecane
displacing water.

Figure 11 shows breakthrough saturations from mercu-
ry invasion experiments on Coconino sandstone as a
function of sample size over the size range of 0.5-2.5 cm.
In contrast to Berea, Coconino sandstone has pro-
nounced permeability anisotropy with k~10 pdarcy
along bedding planes and k <0.1 ndarcy perpendicular to
bedding. For two-dimensional invasion percolation, satu-
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ration follows S « L °F 2, where Dy~1.89 [8]. Two ex-
treme invasion modes are possible in the Coconino sam-
ple. Invasion may take place dominantly along one layer
of the rock. In this case the saturation at breakthrough
will be small, corresponding to threshold filling of a single
plane. In the second case all of the planes will be filled to
the percolation threshold and the saturation at break-
through will be typical of percolation thresholds in two
dimensions, 30-50 %. The observed saturation at break-
through of 30% indicates that all of the two-dimensional
layers of these samples are partially filled at threshold.
The slow change of saturation with sample size is con-
sistent with a two-dimensional percolation problem
where S <L %! but the scatter of the data prevents a
unique measure of the exponent. The relatively large
scatter of the data results from the steepness of the capil-
lary pressure curves. The plot of saturation vs pressure
for Coconino sandstone is nearly vertical near the per-
colation threshold, which introduces a large uncertainty
in the threshold saturation.

The effect of sample aspect ratio on the occupied pore
fraction at breakthrough as determined from simulations
is shown in Fig. 12. At low aspect ratios, a greater
volume of invaded fluid can exist in pretenders compared
with the volume on the percolating cluster. In the low-
aspect-ratio range, fractional occupation increases
strongly with aspect ratio. At high aspect ratios, the
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FIG. 9. Fraction of filled pores as a function of sample size (in units of bonds) for 1:1 aspect-ratio samples without buoyancy: (a)
only pores on the percolating structure, (b) only pores on the backbone of the percolating structure, (c) only pores on the pretender
paths, and (d) all pores. For sample sizes greater than ~ 30 bonds, the percolating cluster accounts for ~60% of the total pore occu-
pancy. For the percolating structure (a), regardless of the pore size distribution, all occupation fractions data follow an L /h ~!/2 size
dependence. The pretender paths follow a slightly weaker size dependence of power —0.3 to —0.4.
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FIG. 10. Saturation at breakthrough as a function of sample
diameter for Berea sandstone. The 30-cm-diam, 30-cm-high
sample results are for upward invasion of tetradecane from the
sample base into water filled pores. The other data are for mer-
cury invasion from all surfaces into evacuated samples. The sat-
uration for the 3-cm sample was also observed for tetradecane
displacing water. Accuracy of measurements are within 10% of
measured saturations.
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FIG. 11. Mercury invasion saturation at breakthrough as a
function of sample diameter for Coconino sandstone. The
curves correspond to the expected saturation dependence for
two-dimensional (~L ') and three-dimensional (~L ~*%)
invasion percolation.
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FIG. 12. Saturation at breakthrough without buoyancy as a
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cylinders with fixed diameter of 18 bonds. Total saturation is
S, saturation from pores on the percolating cluster is S., and
saturation from pretenders is S,,.
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dependence is very weak. Similar behavior of saturation
with aspect ratio are reported for two-dimensional square
lattices [3] and three-dimensional cubic lattices [31].

B. Buoyancy effects on saturation

Figure 13 illustrates the displacement pattern with
buoyancy. The pattern is more dense at higher elevations
compared with Fig. 8. On average, the maximum rela-
tive height of the pretenders decreases with buoyancy.
This effect is most likely caused by pretenders joining the
percolating cluster.

As stated earlier, the pressure increment method is
more representative of cases in which fluid invasion is
quasistatic and capillary equilibrium applies throughout
the sample. As long as there is continuity from the
source and viscous effects are negligible, the pressure at a
given elevation is a simple linear function of gravity. For
positive buoyancy, as the elevation in the sample in-
creases, the probability for filling pores increases. The
filled structure becomes more diffuse and funnel shaped
(see Fig. 13). If pressure at the source is reduced, isolated
structures can form; however, these will reconnect along
the same pores when the source pressure increases again,
assuming that no accompanying alteration of the rock
pore structure occurred. The Bond number correlation
length &5 defines the length scale over which the cluster
is fractal [2]. We find that the largest incipient cluster at
the percolation threshold, as defined by the height at
which the characteristic pore r. occurs, §,c, increases

with increasing &5 (as discussed later). While & is
infinite at Ap=0, &, is finite due to finite-size effects. In

addition, as shown below, £, depends on sample shape.

Figure 14 shows the effect of buoyancy on the fraction
of filled tubes F,(p) for a uniform pore size distribution at
different density contrasts. For a given density contrast,
e.g., curves for Ap=0.5 and 1.19 g/cm?, the increase in
F. is greater for the larger lattices. As the density con-
trast between the nonwetting invading fluid and the wet-
ting fluid increases, F, increases. We observe similar
behavior for the backbone portion of the percolating
cluster. Figure 15 shows that for a given sample size F,
increases nonlinearly with density contrast. At small lat-
tice size, F, increase slowly with Ap; the increase for
large lattices is more rapid. Initially for a given lattice
size, the curvature of the F, versus Ap is positive; the ex-
tent of this behavior is greatest for small lattices. As F,
and Ap continue to increase, the curvature becomes nega-
tive.

Figure 16 shows how the power-law exponent m
influences the buoyancy effect at a fixed lattice size for
density contrast of 2.5 g/cm® (Note that this density con-
trast is much larger than in the oil-water system.) The
ordinate of this plot is the factor by which buoyancy
enhances saturation, which is the ratio of the fraction of
filled tubes on the percolation cluster at a density con-
trast of Ap to the fraction when buoyancy is absent
F_(p)/F.(0) [see Fig. 9(a)]. The buoyancy effect is larg-
est for the uniform distribution and for positive ex-
ponents, and its influence diminishes rapidly. with in-
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creasing negative power dependence. The pore size dis-
tributions of rocks are normally not uniform (flat) but are
skewed toward the smaller pore sizes and thus are more
likely to show negative power-law dependences. Hence
we predict that network models that use uniform pore
size distributions will overestimate the effects of buoyan-
cy on saturation and relative permeability. These results
also suggest that when using glass bead packs for capil-
lary invasion experiments, the results of experiments will
not be representative of those expected for rocks.

The effects of buoyancy and sample size on saturation
are combined in Fig. 17. The ordinary of this plot is the
same as in Fig. 16. The abscissa is L /£, which is related
to material and fluid properties, size, and percolation pa-
rameters. It is given by the product of the sample size (in
lattice units L /) and the stochastic Bond number (B )
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(described below) raised to the power v/(1+v), which is
h /Eg. Saturation is not a unique function of Bond num-
ber but is a unique function of size and Bond number.
For L /€5 S 1 we find that the invaded structure must be
a fractal of dimension 2.5 because the scaling given by
Eq. (12) applies within the accuracy of the data. This
agrees with the theoretically expected value and lends
confidence that our definition of £ is correct.

The present results for all simulations of cylindrical
samples with aspect ratios 1:1 indicate

Fip)= i |14+ | (B )1+
=F.(0) |1+F | & (13)
s

FIG. 13. Displacement pattern at breakthrough obtained from nonwetting low-density (Ap=1 g/cm?) fluid invasion on a cubic
lattice from the base into a cylinder of size «323. The pore size distribution is uniform, i.e., m =0. The percolating structure is

shown in violet and the pretenders are in green.
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FIG. 14. Fraction of filled pores on the percolating cluster as
a function of sample size with buoyancy for a uniform pore size
distribution with rpgy /7 min=100. The F, «(L/h)~'/? curve is
the fraction when Ap=0. At a constant density, e.g., Ap=0.5
or 1.19 g/cm? the occupied pore fraction initially decreases
with (L /h)'/? at small sample sizes, but increases with sample
size at large sizes.
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FIG. 15. Fraction of filled pores on the percolating cluster as
a function of density contrast for a uniform pore size distribu-
tion with 7., /7min =100. Shown are data for sample sizes
L /h =16, 32, 50, and 100.
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FIG. 16. Fraction of filled pores F, normalized by the frac-
tion without buoyancy F.(Ap=0) as a function of the exponent
m of power-law pore size distributions f(r)<r™ at a sample
size of 32 bonds and 7., /7mi, =100. Shown are results for
Ap=2.5 g/cm®. For distributions strongly skewed toward the
small pore sizes, e.g., m < —2, the occupied pore fraction is
nearly identical to the pore-size-independent zero-buoyancy
fraction.
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The flll)nc_t%onal form of F is not simple: F~O0 and
F.~L"F "~L7% for L/£p<1. At high-density con-
trasts and while L /§5>1, ¥ varies with (L /§z—1) to
the ower 0.6-0.8 and F.~F.(0)L /&g
~LD1:_" Bv/(v+l)~L +O'SBO'47"-=(LB)O’5. Scaling up lab-
oratory scale saturations to the field scale is a simple
function of L %% at low buoyancy, where L /&5 S1.
However, because saturation depends on both L ~%5 and
L /&y at higher buoyancy, scaling is more complex. As-
suming that the same scaling applies to laboratory and
field studies, it will be difficult to design a laboratory ex-
periment to model buoyancy effects seen in the field. For
example, scaling two orders of magnitude downward
from field to laboratory size by changing the fluid proper-
ties requires a factor of 10* increase in the ratio of density
contrast to surface tension. Such scaling could only be
achieved if the pore and grain sizes of the solid media
were also changed.

Included in Fig. 17 are a few runs that represent the in-
jection of mercury (or some other dense nonwetting fluid)
into the base of an evacuated rock. Relation (13) applies
also for these cases, even though buoyancy acts to
enhance the saturation more toward the base of the sam-
ple. Trapping is not included in the present model. We
expect that the coefficients of 7, i.e., the curvature in Fig.
17, will change with trapping.

C. Stochastic Bond number

The Bond number is defined as the ratio of the buoyan-
cy to capillary pressures and is given by

— Apgt iy Ty

(14
2y cos(8) 14

where g is the interfacial tension between the wetting and
nonwetting phases, 0 is the contact angle, and ¢, and
ryyp are the typical throat length and radius. For an arbi-
trary pore size distribution and structure there are no
typical parameters. The Bond number must consist of
statistically averaged parameters

_ Apg(e)(r) .
(B) 2y{cos(8)) ’ 13

where ( ) denote statistical or stochastic averages.

The stochastic radius {r) should reflect the range of
values and the broadness of the distribution. A complete
specification of a pore size distribution requires its func-
tional form, e.g., f(r)<r™, and the maximum and
minimum radii 7, and r;,. The stochastic radius used
in Fig. 17 is
2

2
L“ﬁ{_ (16)

r r

(r)—_—?l

max

where 7 and r,,, respectively are the mean and maximum
throat radii in the pore size distribution. The factor
7 max/(Fmax —F) is the normalized inverse of the extreme
deviate from the mean of the distribution. It is a con-
stant for known f(r) and known distribution window
widths (i.e., 7, /7min =const). We include a factor of ;
in the normalization of the radius in Eq. (16) so that {7)
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FIG. 17. The factor F./F.(Ap=0) by which buoyancy
enhances the occupation fraction as a function of sample size
and rock and fluid properties. The abscissa that scales all pore
size distributions to a single curve is given by the product of the
sample size L /h and a stochastic bond raised to a power that is
related to the correlation exponent from percolation theory (see
text for details). The abscissa is equivalent to the ratio of the
sample size to the Bond number correlation length L /£z. In-
cluded in this plot are positive and negative buoyancy results for
power-law, uniform, linear, and binomial pore size distribu-
tions.

is approximately equal to the mean radius for a uniform
{m =0) pore size distribution when r_,, >>r_ ... Thus
the typical radius for such distributions is the mean. For
distributions that are skewed toward r;,, {r ) =7 /4 with
Pmin <7 <<Fp.x. For distributions that are skewed to-
ward 7p,cs Pmin <<7 <7max> {7) can be much greater than
7. Typically, the pore size distributions of rocks are
skewed toward r_;, and buoyancy effects are less
significant than for uniform pore size distributions. Fig-
ure 4 shows that for power-law pore size distributions 7,
is of the order of 7. The Bond numbers involved in Fig.
17 for |Ap|>0 are generally between 0.0001 and 0.01.
The four most extreme points at L /£z >4 have Bond
numbers between 0.01 and 0.05. The product of the
Bond number and lattice height yields the ratio of the
buoyancy pressure for the total sample height to the
capillary pressure characteristics of the media. This
product is below 0.4 for most cases and only for the most
extreme point does the product exceed unity. This
affirms that the results represent the capillary pressure
dominated regime.

In general, both {¢) and (6) may vary in a porous
rock and will require a statistical description similar to
(r). For our simulations, the throat length (¢ ) is a con-
stant for a given run and is equivalent to h, the lattice
spacing. Similarly, (8) is a constant for a given run.
The Bond number used in Fig. 17 has been verified for
applicability to the scaling by independent variation of
each of the parameters in Eq. (15). The total range of our
Bond numbers is < 107°-0.05. The important difference
between Wilkinson’s £5 [2] and the present one is that we
use the stochastic Bond number. Thus this correlation
length depends on the pore size distribution function; {5
is larger for weak power law (e.g., m =0) distributions.

We examined several alternative forms for (7 ) includ-
ing some with r, or the geometric or harmonic mean ra-
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dius. However, for the present data set that consists of
different power-law, uniform, binomial, and linear distri-
butions with window widths 2<r_, /r.. <10000, none
of the other forms examined came close to collapsing the
data to a single curve.

D. Comparison of the scaling relation
with experimental data

The laboratory measured saturations for both mercury
and oil invasion at breakthrough for Berea sandstone are
not significantly affected by buoyancy as indicated by
their L ~!/2 dependence (Fig. 10). This implies that for
these runs L /€5 S1 or (L /h)Apg{r)?/2y cosf)”/ 1"
S1. Here we have assumed that the throat height ¢
equals (r ), but pores in Berea are not cylindrical tubes.
We estimate 7 to be ~r, for this rock, and because its
pore size distribution is skewed toward r;,,
(r)~7/4~r./4. Thompson, Katz, and Krohn [32] re-
port r,~8 um. The normalization of the sample size L,
i.e., lattice spacing h, is taken as the grain size ~0.03 cm.
With  y;3=52.7 dyn/cm, yy,=485 dyn/cm,
Apy;=0.2372 g/cm’, Apy,=13.54 g/cm’, 6,,~0", and
6y~ 180°, the Bond numbers are By, ~5.5X 1077 and
B, ~8.8X107% and L/&; for both the largest
mercury-injected sample (10 cm) and the 30-cm oil-
injected sample is less than 0.5. This suggests that for
samples of similar fluid and rock properties, buoyancy
only will begin to affect saturation in samples that are at
least twice as large as those measured.

For the oil invasion experiment, the buoyancy column
height at which the buoyancy pressure equals the capil-
lary pressure corresponding to r, in Berea sandstone is
5.7 m. But the simulations indicate that buoyancy will
affect saturation in Berea injected with oil at a height
above 60 cm or one-ninth of the buoyancy column height.
The buoyancy column height should not then be used as
an indicator for when buoyancy is important. Our esti-
mate of buoyancy effects depends on the accuracy of the
mean radius, which is not high. Nonetheless, the results
illustrate that buoyancy affects the saturation long before
the buoyancy pressure is comparable to the breakthrough
capillary pressure.

E. Height of the characteristic pore

For each simulation, the height of the invading oil
cluster at the pressure just prior to the filling of the
characteristic pore r, was determined. This height §,C

corresponds to the maximum cluster height before break-
through. §,c /L also scales with L /& as shown in Fig.

18. With increasing buoyancy §,¢ /L decreases, i.e., the

characteristic pore that must be filled at breakthrough
occurs at lower heights. 7. increases (and the corre-
sponding capillary pressure decreases) weakly with in-
creasing buoyancy. The opposite trend applies for nega-
tive buoyancy (i.e., dense nonwetting fluid invasion). The
applied pressure at the source for breakthrough shows no
detectable trend with buoyancy. Without buoyancy
&) /L ~0.7310.03 regardless of the pore size distribu-
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FIG. 18. Relative height §,c /L at which the breakthrough
pore with diameter r. exists. §,C /L depends on the pore size

distribution and buoyancy. It scales with L /£z in a manner
similar to the occupation probability. The few points for the
uniform distribution that fall beneath the curve are from the
smallest sample sizes and are too strongly affected by finite-size
effects. The points from a simulation on a body-centered-cubic
lattice with next nearest neighbors Cy = 14 differ from the main
curve as a result of their relatively higher correlation lengths
£g. For negative buoyancy Ap <0, for example, in mercury in-
jection, the height of the characteristic pore increases with
buoyancy and sample size. Included in this plot are results from
power-law and uniform (positive, O; negative mercurylike, X),
linear (A ), and binomial (M) pore size distributions as well as
results for body-centered-cubic lattices with next nearest neigh-
bors (BCC2, V) and runs where sample boundary was a cubic
(o).

tion. Figure 19 shows that the maximum pretender
height £, /L has a similar trend with L/£p. £, /L is less
than half of the height of the sample at zero buoyancy.
The pretender heights decrease with increasing buoyancy
and sample size. 1:1 cubical-shaped samples follow simi-
lar dependences for §,E /L and §,/L. For negative buoy-

ancy, £, /L is reduced relative to positive buoyancy rath-
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o5k é A linear »
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FIG. 19. Maximum relative height £,/L of the pretender
paths as a function of L/£p. Plot symbols are the same as in
Fig. 18.
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er than increased as §, /L because of the greater concen-
(4

tration of filled pores toward lower elevations.
Because £, is the maximum cluster size prior to break-

through, it can be related to the Bond number correlation
length, which represents the length over which the struc-
ture is fractal. Figure 20 shows that for £5/L <0.6
(L /&5 R 1.6) both §,c /L and §,/L vary approximately

linearly with £5. For high buoyancy (small £z /L) and
Ap>0, §,c ~&p. The dependence of §,c on £y as well as

the size of r, are identical for the lowest-rank and pres-
sure increment methods of invasion because both
methods have identical properties as the percolation
threshold is approached.

The behaviors of the maximum pretender height and
the height of r, with sample aspect ratio are linked to the
variations in saturation. At zero buoyancy with increas-
ing sample aspect ratio, the relative height of 7, §(,)C /L,

and the maximum relative pretender height §g/L de-
crease (Fig. 21). At low aspect ratios, there can exist
many pretenders that nearly reach the top surface. As
the aspect ratio increases, it is more likely that pretenders
will join to the percolating cluster and thus their max-
imum height decreases while the percolating cluster satu-
ration becomes a larger fraction of the total saturation.
The addition of path components on the percolating clus-
ter from pretenders makes it more likely that the height
of the constriction on the first path & r, /L will decrease in
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FIG. 20. Maximum relative heights (a) §,C /L for r. and (b)

&,/L of the pretenders for Ap>0 and Ap <0 as functions of
L /€. Results shown for positive buoyancy (#) and negative
buoyancy (O). Results for the body-centered lattice are not
shown.
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FIG. 21. Relative heights of the characteristic pore §‘,’C /L

and the highest pretender §2/L at breakthrough without buoy-
ancy as a function of aspect ratio [(height):(diameter)] from
simulations of cylinders with fixed diameter of 18 bonds.

elevation. The relative size of r, decreases with aspect ra-
tio so that the total percentage of pores of size r > r, (i.e.,
the saturation) increases. At large aspect ratios, §‘,)c /L,

§ﬁ/L, r., and saturation do not change significantly with
aspect ratio. Simulations involving a few different pore
size distributions and different diameter samples suggest
that the limit of §‘,)c /L at high aspect ratio is ~0.5.

Preliminary results for 1:1 cylinders of coordination
number Cy =14 (body-centered cubic with next nearest
neighbors) show that &) /L ~0.77, indicating no strong

dependence on Cy at zero buoyancy. §,c /L decreases

strongly with buoyancy when Cy =14 over the range
O0<L /&g <2 (Fig. 16). This sensitivity to buoyancy re-
sults from the larger correlation length for the Cy =14
samples. For identical conditions the ratio of
L /Eg(Cy=14)to L /£5(Cy=26) is about 0.5, which is of
the order of the inverse of the ratio of their correspond-
ing coordination numbers. (As the Cy =14 lattice has six
bonds of throat length # and eight bonds of size V'3/2h,
the average (¢ ) should be slightly reduced and would aid
in the correspondence.) The occupancy fractions for the
Cy =14 lattice are smaller than the corresponding Cy =6
lattice. This behavior is consistent with Fig. 17, which
shows that saturation increases with decreasing buoyancy
correlation length £p.

F. Saturation vs percolation probability

To compute saturations from the fraction of occupied
pore throats, we must account for the volume of all pore
throats that exist in the lattice. The total volume of
throats includes the volume contributions of throats on
the percolation cluster and pretender paths that are filled,
unfilled nearest neighbors to these throats, and unfilled
non-nearest-neighbor throats. The volume contribution
of the non-nearest-neighbor throats is determined from
the product of their number and the expectation of their
volume E(volume), where

E (volume)=1t frrn'mrzf(r)dr . 17
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FIG. 22. Occupation fraction of filled pores on the percolat-
ing cluster for power-law pore size distributions as a function of
the product of saturation from these pores, porosity, and scaling
factors related to the width of the pore size distribution. See
text for details.

For cylindrical pore tubes of power-law radius distribu-
tion,

E (volume)=rta, , (18)

where a, is the second moment of the pore size distribu-
tion. For a given pore size distribution, the porosity is in-
dependent of sample size. However, as Eq. (17) shows,
porosity varies with »_. ., 7 .., and f(r). When porosity
results solely from cylindrical pore throats, the empirical
relationship between the occupation fraction F, and the
saturation S, is

/25

t 2 (
10 max (19)

F.xS.¢

rmax

(see Fig. 22). The t/r,,, term scales pore size distribu-
tions that differ only in location of the distribution win-
dow or in the pore throat length. The scale factor involv-
ing r,, and 7 is a constant for a given power law and
pore size distributions width. Between fundamentally
different pore size distributions, e.g., binomial and
power-law, we have not found a simple relation between
F,andS,.

In the extreme case where pore bodies with sizes un-
correlated to pore throats exist and their volume dom-
inates, we expect F,=S_.¢. For high-porosity rocks, the
total porosity may be much greater than the throat
porosity and the behavior of the occupation fraction and
the saturation are synonymous. In many low-porosity
rocks, however, pore bodies and pore throats may be
difficult to distinguish and a scaling related to with
characteristics of the pore size distribution, such as in Eq.
(19), is required.

G. Relative permeability and size dependence

As indicated in Fig. 10, the minimum saturation for
nonwetting fluid to form a continuous path depends on
sample size. Because the set of pores that are filled at this
minimum saturation are among the largest pores avail-
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able, we expect that properties that depend on the size
and connectivity of the pore conduits, such as permeabili-
ty, will also depend on sample size. We obtained prelimi-
nary experimental results for relative permeability of
Berea sandstone at breakthrough in primary drainage for
two different sample geometries. One sample is an 8:1
aspect-ratio, 30.5-cm-long, 3.81-cm-diam cylinder. The
other sample is a 1:1 aspect-ratio, 30.5-cm-high, 30.5-
cm-diam cylinder. The 8:1 cylinder was an experiment in
which helium invaded an oil saturated sample [33]. The
1:1 cylinder was oil invasion into water-saturated rock.
The rate of flow of invading fluid for the 8:1 cylinder was
about three orders of magnitude greater than for the 1:1
cylinder. The absolute water permeabilities for these two
samples was about 200 mdarcy. The minimum saturation
for the 8:1 sample was ~12% whereas the 1:1 sample
had a saturation of ~3%. The 1:1 sample result was
found to be repeatable on a similar piece of Berea sand-
stone of the same dimensions. The high saturation for
the 8:1 sample is a result of both the high aspect ratio (see
Fig. 11) and the smaller diameter. The 8:1 sample has a
saturation that is more typical of a 1:1 aspect ratio of size
comparable to the 3.81 cm diameter of the 8:1 sample
rather than the 30.5 cm length.

At minimum nonwetting phase saturation the relative
permeability of the 8:1 sample is about 0.006, which is
half an order of magnitude below that of the 1:1 sample
(0.019). The permeability reduction is qualitatively con-
sistent with the numerical simulations. While the satura-
tion is higher for the 8:1 sample at breakthrough, the
characteristic pore radius (capillary pressure) required for
breakthrough is smaller (larger) relative to the 1:1 sam-
ple. The pores filled in the 1:1 aspect ratio sample are
among the larger pores in the rock and thus they are re-
sponsible for relatively high permeability. In addition, in
the 8:1 sample many pores are filled that intersect the
sample boundaries and hence do not contribute to flow.
These boundary-imposed dead ends contribute to a lower
permeability at a higher saturation than the 1:1 sample.

V1. COMPARISONS WITH OTHER STUDIES

The present results are in marked contrast to those of
Meakin et al. [4,5], who used the lowest-rank method for
invasion. The simulations of Meakin et al. show no
significant change in pore occupancy with elevation. The
three-dimensional structure created by their method con-
sists of a string of blobs, each of length ~£,, that form
an upward directed walk. The internal structure of the
blobs is like that of an invasion percolation cluster with a
fractal dimension of Dy~2.5. The distance between the
blobs is comparable to the blob size. The size of the blobs
follows a similar dependence on Bond number as &5 in
Eq. (11), which yields lower saturations with increased
buoyancy. Meakin et al. used lattices of aspect ratio 2:1
with periodic boundary conditions. They did not do de-
tailed investigations of pore size distribution effects on
the Bond number. Their results show that with increas-
ing gravitation gradient the structure is less diffuse and
narrower throughout the sample volume. This narrowing
of the filled structure is due to their choice of the lowest-
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rank method.

Frette et al. [6] performed experiments involving the
invasion of sucrose solutions into a random packing of 2-
mm cylindrical grains saturated with dibutylphthalate.
The invaded structures produced resembled those of the
simulations of Meakin et al. [5], i.e., blobs on a string.
However, their experiments were not in capillary equilib-
rium as the injection rates were high and the time re-
quired for their structures to relax was much longer than
the duration of the experiment. Because of their large
grain size and relatively high Bond numbers of
0.015-0.75, buoyancy pressure exceeded the capillary
pressure in their experiments at corresponding heights of
65 and 2 grains. The packings were held in a cylinder
140 grains high. Whenever the filled column height ex-
ceeded the local capillary pressure, a large segment of
structure could potentially disconnect and drain upward;
such phenomena are reported by Frette et al. [6]. In
contrast, our simulations and experiments involved sam-
ples of sizes where the buoyancy pressure at the top of
the sample did not exceed the capillary pressure.

Catalan et al. [7] examined the migration of oil
(Ap=0.239 g/cm’, y=31.4 dyn/cm) into a water-
saturated, 63-cm-long, 1.9-cm-diam column packed with
glass beads or quartz sand. At the start of their experi-
ment, the base of the column was saturated with oil to a
specified height. They observed that migration could
occur without additional applied pressure if the height of
the oil column ranged from 7 to 16 cm. These heights are
much lower than the height of the sample and indicate
that large Bond numbers apply. In contrast, for our oil
injection experiments on 30-cm-long, 30-cm-diam Berea
sandstone cylinders, the buoyancy pressure at the top of
the rock was below 1% of the capillary pressure corre-
sponding to r.. The results of Catalan et al. suggest that
saturations in secondary migration should be of the order
of 10%. However, the present study shows that the
geometry used in the experiments of Catalan et al. is not
representative of the field. The high aspect ratios of their
samples force saturations to be high and independent of
sample size. In addition, their Bond numbers are not ap-
propriate to the field.

Critical saturations of about 10% are also suggested
from Schowalter’s [34] measurements of capillary in-
vasion of nitrogen into water-saturated sedimentary
rocks or from mercury invasion. These samples were of
the order of 2.54 cm. Saturations of the order of 10% are
also observed for our Berea sandstone samples of this
size. Comparison of Schowalter’s results for chips of
various sizes with cores shows that critical saturation
tends to decrease as sample size increases. The sample
sizes are not described in detail and the capillary pressure
data points are too widely spaced near breakthrough to
be able to determine quantitative dependences.

Earlier studies of size-dependent capillary pressure did
not make use of the scaling relations intrinsic to percola-
tion theory. Larson and Morror [35] discussed size
effects in capillary pressure in terms of accessibility of
pores. They found that porous media larger than a few
tens of grains in size produced sharp capillary pressure
curves similar to infinite samples. But at the time of that
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work the definition of the percolation threshold at the
inflection point of the capillary pressure curve was not
widely recognized, so exact saturations at threshold were
not defined. Larson and Morrow review other early work
on the subject.

VII. SUMMARY

For quasistatic invasion under capillary equilibrium
the critical fraction of filled pores at breakthrough de-
creases with the square root of sample size without buoy-
ancy, independent of the pore size distribution. For large
sample sizes, the percolating cluster accounts for ~60%
of the total occupied pores and the remainder resides on
pretender paths that lead from the source but are not
connected to the percolating cluster. Saturation, which
depends on the pore size distribution, follows a similar
dependence on sample size; this has been verified by ex-
periments on Berea sandstone over the range of sample
sizes from 0.3 to 30 cm. Because saturation depends on
sample size, laboratory measurements should not in gen-
eral be used to estimate field saturations without includ-
ing a size correction.

The inverse square root dependence of saturation on
sample size indicates that the invasion process is a per-
colation process and that the fractal dimension of the
percolation cluster is 2.5. This fractal dimension, which
was obtained under the assumption of capillary equilibri-
um throughout the sample volume, is identical to that ob-
tained by others in the nonequilibrium invasion percola-
tion (constant flow rate) process. As a percolation pro-
cess, the size dependence of saturation is an inherent
characteristic of statistically homogeneous, random
media. For a rock that has profound permeability anisot-
ropy, such as Coconino sandstone, we observe a weaker
dependence of breakthrough saturation on sample size
that is consistent with two-dimensional invasion percola-
tion.

Sample shape affects saturation at breakthrough.
Large-aspect-ratio [(height):(diameter)] samples have
greater saturation and smaller critical pore radius than
low-aspect-ratio samples. At high aspect ratios, the
dependence of saturation on aspect ratio is weak. The
aspect-ratio effects are important to consider when
designing and interpreting laboratory experiments as well
as behavior in the field. Relative permeability at break-
through, which is dependent on the largest interconnect-
ed pores, also depends on sample size and shape.

When buoyancy is significant the pore size distribution
affects the pore occupancy and the critical saturation de-
pends on buoyancy. These effects can be understood by

2085

including a measure of the skewness of the pore size dis-
tribution in the Bond number and combining with in-
vasion percolation theory. Saturation does not scale with
Bond number but scales with the ratio of sample size L to
Bond number correlation length £, which is inversely re-
lated to the Bond number to the 0.47 power. The height
of the critical pore that must be filled to achieve break-
through also scales with L /£z. Most rocks have pore
size distributions that are skewed toward smaller pore
sizes; this reduces the effect of buoyancy on saturation as
compared with a uniform pore size distribution. Often
for simplicity, laboratory experiments use relatively uni-
form (flat) pore size distributions (e.g., uniform glass bead
packs) with the result of large buoyancy effects. Labora-
tory experiments must be carefully designed to account
for the effect of pore size distribution on Bond number
when attempting to apply such results to the field scale.
Our results at small Bond numbers (capillary pressure
dominated regime) are more characteristic of problems in
secondary migration and possibly critical gas saturation
than the usual invasion percolation simulations because
capillary pressures in the field are typically larger than
those observed in laboratory experiments and simulated
in invasion percolation.

The same scaling that is observed for any quasistatic
nonwetting fluid injection process, i.e., oil into water, gas
into oil, or gas into water, also applies to mercury injec-
tion into an evacuated sample. In all these cases, the
same threshold pore size r,, as determined by break-
through pressure, will result, which is relatively insensi-
tive to sample size [32]. However, the saturations at
threshold will be strongly size dependent. Consequently,
the capillary pressure-saturation curves from different ex-
periments cannot be simply compared when there is a
large difference in size of samples. Different techniques
may be more applicable to different ranges of sample
sizes, e.g., mercury injection is most likely to be done on
small samples, while centrifuge measurements are usually
done on larger samples. There may then be differences in
capillary pressure curves that have been attributed to
differences in technique that are more properly ascribed
to sample size effects.
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FIG. 13. Displacement pattern at breakthrough obtained from nonwetting low-density (Ap=1 g/cm?) fluid invasion on a cubic

lattice from the base into a cylinder of size «323. The pore size distribution is uniform, i.e., m

shown in violet and the pretenders are in green.

0. The percolating structure is



FIG. 8. Displacement pattern at breakthrough obtained from nonwetting fluid invasion on a cubic lattice from the base into a

cylinder of size «32°. The pore size distribution is uniform, i.e., m

tenders are in green.

0. The percolating structure is shown in violet and the pre-



